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Prefetching is an important technique for reducing the average latency of memory accesses in
scalable cache-coherent multiprocessors. Aggressive prefetching can significantly reduce the number
of cache misses, but may introduce bursty network and memory traffic, and increase data sharing
and cache pollution. Given that we anticipate enormous increases in both network bandwidth
and latency, we examine whether aggressive prefetching triggered by a miss (cache-miss-initiated
prefetching) can substantially improve the running time of parallel programs.

Using execution-driven simulation of parallel programs on a scalable cache-coherent machine,
we study the performance of three cache-miss-initiated prefetching techniques: large cache blocks,
sequential prefetching, and hybrid prefetching. Large cache blocks (which fetch multiple words
within a single block) and sequential prefetching (which fetches multiple consecutive blocks) are
well-known prefetching strategies. Hybrid prefetching is a novel technique combining hardware and
software support for stride-directed prefetching.

Our simulation results show that large cache blocks rarely provide significant performance im-
provements; the improvement in the miss rate is often too small (or nonexistent) to offset a corre-
sponding increase in the miss penalty. Our results also show that sequential and hybrid prefetching
perform better than prefetching via large cache blocks, and that hybrid prefetching performs at least
as well as sequential prefetching. In fact, given sufficiently high bandwidth and regular memory
addressing, hybrid prefetching can perform as well as software prefetching (which does not require
a miss to initiate prefetching). We conclude that among the cache-miss-initiated prefetching tech-
niques we consider, hybrid prefetching is the only technique that offers significant performance
improvements for scalable multiprocessors.

This research was supported under ONR Contract No. N00014-92-J-1801 (in conjunction with the ARPA HPCC
program, ARPA Order No. 8930) and NSF CISE Institutional Infrastructure Program Grant No. CDA-8822724.
Ricardo Bianchini is supported by Brazilian CAPES and NUTES/UFRJ fellowships.



1 Introduction

The high cost of remote memory accesses is a major impediment to good performance on scalable
cache-coherent multiprocessors. In order to tolerate the latency of remote memory accesses in these
machines, data prefetching techniques triggered by cache misses are often used. We refer to these
techniques as cache-miss-initiated prefetching.

Every prefetching technique is based on an ability to predict, in advance, which addresses an
application will reference in the near future. If the predictions are wrong, then the cache is filled
with data that will not be referenced soon, resulting in cache pollution. If data is prefetched too
early, then it can become stale before it is referenced, requiring a refetch of the data and increasing
coherence traffic. Prefetching techniques must balance the benefits of fetching data early with these
increased costs.

Two additional characteristics of cache-miss-initiated prefetching techniques are: (1) some cache
misses are required, since misses provide the only opportunities for prefetching and (2) a large
amount of data must be transferred at each miss in order to prevent future misses. These two
characteristics of cache-miss-initiated prefetching cause the data traffic of an application to become
bursty, since there are fewer misses, but each miss prefetches lots of data. This bursty traffic can
result in serious performance degradation, particularly in machines with limited communication or
memory bandwidth. Thus, when considering aggressive cache-miss-initiated prefetching, there is an
additional tradeoff between lower miss rates and the potential for network and memory contention.

In this paper we use execution-driven simulation of parallel programs to evaluate these tradeoffs
for scalable multiprocessors with high network bandwidth and latency. In particular, we consider
the effect on application performance of three different cache-miss-initiated prefetching techniques:
(1) large cache blocks, which fetch multiple addresses within a single block, (2) sequential prefetch-
ing, which fetches multiple consecutive blocks, and (3) hybrid prefetching, a novel technique com-
bining hardware and software support for stride-directed prefetching.

Our results show that block sizes between 16 and 128 bytes provide the best performance for our
applications; larger blocks either increase the miss rate or incur an increase in the miss penalty that
dominates any improvement in the miss rate. Our results also show that sequential and hybrid
prefetching perform better than prefetching via large cache blocks, and that hybrid prefetching
performs at least as well as sequential prefetching. In fact, hybrid prefetching can perform as well
as software prefetching, given sufficient bandwidth and regular memory addressing. Based on these
results, we conclude that among the cache-miss-initiated prefetching techniques we consider, hybrid
prefetching is the only strategy that can offer significant performance improvements for scalable
multiprocessors.

The remainder of this paper is organized as follows. In section 2 we describe in detail each of the
cache-miss-initiated techniques we consider. In section 3 we describe our simulation methodology,
performance metrics, and application workload. We present our experimental results in section 4,
and our conclusions in section 5.
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2 Cache-Miss-Initiated Prefetching Techniques

In this section, we overview the tradeoffs involved in each of the cache-miss-initiated prefetching
techniques we consider.

2.1 Large Cache Blocks

The choice of block size depends on the locality and sharing properties of applications, as well as the
remote access latency and bandwidth. The spatial and processor (sharing) locality of applications
determines how miss rates vary as a function of the block size. Applications with good spatial
locality usually benefit from using larger carhe blocks, since most of the data in a cache block is
likely to be referenced before it is evicted or invalidated. In the absence of write sharing of data,
an increase in the block size reduces the miss rate until the cache pollution point [Eggers and Katz,
1989].

The relationship between the cache block size and the miss rate has been studied extensively in
the context of uniprocessors (e.g., [Przybylski, 1990]), but the miss rates of parallel programs do
not always follow the same trends as sequential programs [Eggers and Katz, 1989]. Applications
with coarse-grain sharing typically favor large cache blocks since, for these applications, the true
sharing miss rate goes down with an increase in block size. Applications with fine-grain sharing
usually favor small cache blocks, so as to avoid false sharing, and to avoid bringing data into the
cache that will be invalidated before referenced.

In the best case (perfect spatial locality and coarse-grain sharing), doubling the size of cache
blocks would cut the miss rate in half. Unfortunately, this best case scenario is extremely rare;
increasing the block size typically causes more misses of one type while reducing the number of
misses of another type.

The choice of block size does not depend solely on miss rates of applications; we must also con-
sider architectural parameters. In particular, remote access latency and bandwidth are important
factors, as they determine the cost of fetching a cache block.' High remote access latency favors
large cache blocks, since more data can be accessed with the same latency penalty. High remote
access bandwidth also favors large cache blocks, since more data can be transferred for little extra
cost. Large cache blocks can introduce network contention problems however, since small pack-
ets generate less contention than large ones (assuming the same amount of data is transferred in
both cases) [Agarwal, 1991]. Also, memory performance is affected by the block size; large blocks
increase the memory busy time, thereby delaying contending processors.

Increased network and memory bandwidth can reduce the cost of transferring large cache blocks,
but do not change the role of the miss rate. An increase in block size only improves performance
when the larger blocks result in a lower miss rate. Even then, the decrease in the miss rate must
be enough to offset the higher miss penalty of larger blocks.

Several researchers have studied the impact of cache block size on the miss rate and overall mes-
sage traffic on small-scale, bus-based multiprocessors (e.g., [Eggers and Katz, 1989]). The results

1The latency of the memory is the time it takes to deliver the first word of data from the memory. The latency of
the network is the time it takes to transfer a single word of data from source to destination. The bandwidth of the
network (or memory) is the number of bytes transferred per second after the initial latency period.
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of these studies do not apply directly to scalable, network-based machines however, which incor-
porate very different architectural tradeoffs. Other studies (e.g., [Dubnicki, 1993; Lee et al., 1987])
have explored the relationship between block size and network bandwidth, but these studies either
ignore one or more important factors (such as finite-sized caches, or network contention), or assume
a different architecture. We addressed these concerns in [Bianchini and LeBlanc, 1994), where we
studied the relationship between cache block size and application performance as a function of
remote access bandwidth and latency.

2.2 Sequential Prefetching

Even when large cache blocks reduce the miss rate, the higher miss penalty may actually hurt overall
performance. One way to reduce the miss penalty, while still retaining the potential for lower miss
rates, is to use sequential prefetching with small cache blocks. Under sequential prefetching, a read
miss causes some number of successive blocks to be prefetched independently. 2 Prefetches are only
issued for blocks for which there are no pending operations, and which are not in the cache at the
time of the miss. The processor can continue execution as soon as the block that caused the miss
is loaded into the cache. In this way, the cost of prefetching other blocks can be overlapped with
computation.

In terms of the read miss rate, sequential prefetching has the potential to perform well for
programs that benefit from large cache blocks (i.e., programs with good spatial locality and limited
sharing). In contrast to large cache blocks, sequential prefetching is less likely to suffer from false
sharing, since the coherency units are small.

In the absence of false sharing, sequential prefetching generates more network transactions than
large cache blocks, since several prefetch requests are required to load the data in a large cache block.
Each request can be serviced more rapidly however, and requests from different processors may get
interleaved. This latter feature is particularly important under tight synchronization constraints.

Although sequential prefetching has been studied extensively in the context of uniprocessors
(e.g. [Smith, 1978]), the same is not true for multiprocessors. [Dahlgren et al., 1993] compares
the performance of sequential preietching with an adaptive sequential prefetching technique for
scalable multiprocessors. They also studied the performance of large cache blocks that fetch the
same amount of data as the sequential prefetching strategy. Their results showed that adaptive
prefetching performs at least as well as sequential prefetching, and that both strategies perform
better than large cache blocks. This study assumed infinite network bandwidth however, and did
not investigate how aggressively prefetches could be issued. In particular, their implementation of
sequential prefetching only fetched a single extra block on a read miss.

2.3 Hybrid Prefetching

Both large cache blocks and sequential prefetching only work well for programs with very good
spatial locality. Stride-directed prefetching [Fu and Patel, 1992] and lookahead data prefetching
[Baer and Chen, 1991] are examples of prefetching techniques that attempt to deal with large strides
in data accesses.

2 Write misses and requests for exclusive access to shared data could also prefetch additional blocks, but we do not
consider these cases. Write buffers and relaxed consistency are sufficient to hide write latencies in most cases.
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Under stride-directed prefetching, a Stride Prediction Table (SPT) is used to store the last
memory address referenced by an instruction. Strides are automatically computed by subtracting
consecutive memory addresses referenced by an instruction. Once the stride of access for an in-
struction is computed, a prefetch of the next required memory block can be issued (provided that
the stride is non-zero).

Hybrid prefetching is similar to stride-directed prefetching in that both use a hardware table
for storing stride-related information. Hybrid prefetching uses an instruction/stride table (IST)
indexed by instruction address, where each entry contains the number of blocks to prefetch on a
read miss and a stride between the blocks. On a read miss, the cache controller fetches the block
that caused the miss and prefetches additional blocks with a certain stride, as determined by the
IST entry for the instruction. If the instruction has no corresponding entry in the IST, a single
block (with stride 1) is prefetched on its behalf.

Under hybrid prefetching, the compiler computes the stride of access for an instruction and the
number of blocks to prefetch on each cache miss, and generates code to fill in the IST. This code
usually resides outside loops, and therefore the overhead of changing the table is negligible.

There are several differences between stride-directed prefetching and hybrid prefetching:

" Under stride-directed prefetching, the strides are generated on-the-fly using dynamic refer-
ence information, while the stride information is generated by the compiler under hybrid
prefetching.

" Stride-directed prefetching only prefetches one block, while hybrid prefetching allows several
blocks to be fetched on a read miss.

" Under hybrid prefetching different instructions can prefetch a different number of blocks,
while under stride-directed prefetching all instructions prefetch the same number of blocks.

" The IST is managed by the compiler, so the table itself can be very small (i.e., 4 or 8 entries).
The SPT requires a separate entry for each prefetching instruction, and therefore must be
very large (possibly on the order of 1K entries).

" The SPT resides on the processor chip; the IST resides outside the processor chip, since we
only prefetch on cache (read) misses. Thus, under hybrid prefetching, the instruction address
must be available outside the processor chip on a read miss.

Like stride-directed prefetching, hybrid prefetching does not perform well with irregular strides.
Another drawback of hybrid prefetching is that it depends on the compiler being able to determine
strides of access for the relevant instructions in the program. When this analysis is not possible for
a particular instruction, hybrid prefetching must either default to a less sophisticated prefetching
strategy (e.g., sequential prefetching) or simply avoid prefetching for that instruction.

Hybrid prefetching is strictly more powerful than sequential prefetching, since the IST can be
programmed to prefetch blocks with unit stride. In fact, it is easy to resort to sequential prefetching
whenever the stride cannot be determined at compile time. In addition, the number of blocks to
prefetch on a miss can be varied on a per instruction basis. Hybrid prefetching also compares
favorably against large cache blocks, since hybrid prefetching not only performs well for large
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regular access strides, but also reduces the miss penalty by handling small cache blocks. The main
disadvantage of hybrid prefetching is that it requires additional hardware (i.e., the IST).

The extent to which hybrid prefetching dominates the other cache-miss-initiated techniques
depends on the stride of access in parallel programs. In the section 4, we describe the access
patterns of our application suite, and evaluate the performance of each of the cache-miss-initiated
prefetching strategies under varying assumptions about bandwidth.

3 Methodology and Workload

We are interested in exploring variations ia bandwidth and prefetching strategies in scalable shared-
memory multiprocessors, and therefore direct experimentation is not an available option. Thus, we
use simulation for our studies.

3.1 Multiprocessor Simulation

We use an on-line, execution-driven simulator that exploits a mixture of interpretation and native
execution to simulate unmodified MIPS R3000 object code. The simulator is divided into two
parts, an event generator [Veenstra, 1993] and an event executor. The event generator simulates the
processor and registers and calls the event executor on every memory reference. The event executor
determines which processors block awaiting remote references and which processors continue to
execute.

We simulate events at the level of processor cycles; all simulation parameters and results are
expressed in terms of processor cycles. Our event executor deals with all the major components of
a parallel computing system: caches, the interconnection network, local memories, and directories.

We simulate a scalable direct-connected multiprocessor with 32 nodes. Each node in the sim-
ulated machine contains a single processor, cache memory, local memory, directory memory, and
a network interface. The connection between these node components is clocked at half the speed
of the processor. Each processor has a 16-entry write buffer and a 128 KB direct-mapped, lock-up
free, write-back cache. The cache block size is a parameter in our study. Caches are kept coherent
using an implementation of the DASH protocol with release consistency [Lenoski et al., 1990].

The simulator implements a full-map directory for controlling the state of each block of memory.
Each node contains the directory for the memory associated with that node.

Throughout this paper we refer to the ensemble of addressable local memory and directory
memory at each node as a "memory module." Shared memory is interleaved among the nodes
at a memory (cache) block granularity, i.e. consecutive blocks are assigned to successive nodes in
round-robin fashion. 3 Memory modules queue requests (coming either from the cache or network
interface) when the module is busy. Memory queues are assumed to be infinite. The latency of a
memory module is 24 processor cycles. The memory transfer rates we use are described in table 1
(assuming 100 MHz clocks).

The interconnection network is a bi-directional wormhole-routed mesh, with dimension-ordered
routing. The network clock speed is the same as the processor clock speed. Switch nodes introduce

3This memory organization is used in other multiprocessors, including the BBN TC2000 [BBN, 1989].
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Level Latency Cycles/Word Memory Bandwidth
Infinite 24 cycles 0 cycles Infinite
High 24 cycles 0.5 cycles 800 MB/sec
Medium 24 cycles 2 cycle 200 MB/sec
Low 24 cycles 4 cycles 100 MB/sec

Table 1: Memory bandwidth levels used in simulated machine.

Level Path Width Latency/Switch Latency/Link Bi-dir Link Bandwidth
Infinite Infinite 5 cycles 1 cycle Infinite
High 128 bits 5 cycles 1 cycle 3.2 GB/sec
Medium 32 bits 5 cycles 1 cycle 800 MB/sec
Low 16 bits 5 cycles 1 cycle 400 MB/sec

Table 2: Network bandwidth levels used in simulated machine.

a 5-cycle delay to the header of each message. The bandwidth of the network is a parameter in our
study. In finite-bandwidth networks (derived from the Alewife cycle-by-cycle network simulator),
contention for network links and buffers is fully captured. Each network interface has a queue
for out-going messages, which is fed either by the cache or the memory module at the node. For
comparison purposes we also implement an idealized, infinite bandwidth network, in which the path
width is always larger than the size of messages. The idealized network only models contention at
the source and destination of messages. The levels of network bandwidth we use are described in
table 2 (again, assuming 100 MHz clocks).

3.2 Performance Metrics

For the most part our focus is on three different metrics: the read miss rate, the memory access
stall time per processor, and the running time of the application. We ignore write misses in most
cases because we assume deep write buffers and release consistency, which serve to hide the cost of
writes. The read miss rate is computed solely with respect to shared references. That is, the read
miss rate is defined as the total number of read misses on shared data divided by the total number
of reads to shared data. We classify misses using an extension of the algorithm in [Dubois et al.,
1993].

The memory access stall time (MAST) is defined as the total stall time experienced by all
processors due to memory references (read misses and stalls caused by a full write buffer) divided
by the number of processors. In most cases, read misses account for almost all of the stall time;
unless stated otherwise, write overheads are negligible.

Using running time as a metric accounts for all activities that occur during the simulated
execution of a program. Accesses to code and private data are modeled as cache hits.
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Application Shared Refs Shared Reads Shared Writes
(% of shared refs) (% of shared refs)

Barnes-Hut 54.7 M 98 % 2%
Gauss 64.5 M 67% 33%
MMp3d 12.7 M 64 % 36 %
Blocked LU 47.3 M 90 % 10 1

Table 3: Memory reference characteristics on 32 processors.

3.3 Workload

Our application workload consists of four parallel programs: Barnes-Hut, HMp3d, Blocked LU, and
Gauss. Barnes-Hut is an N-body application that simulates the evolution of 4K bodies under
the influence of gravitational forces for 4 time steps. KMp3d is an improved version of Mp3d, a
wind-tunnel airflow simulation of 30000 particles for 20 time steps. Both Barnes-Hut and Xp3d
are from the SPLASH suite [Singh et al., 1992]. In our modified implementation of Mp3d, particles
are assigned to processors in such a way as to reduce sharing significantly. Blocked LU performs
blocked right-looking LU decomposition [Dackland et al., 1992] on a 384 x 384 matrix. Gauss is
an unblocked implementation of Gaussian elimination on a 400 x 400 matrix. Table 3 summarizes
the distribution of shared references in our applications on a 32-processor machine.

As is the case with similar studies, simulation constraints prevent experimentation with "real
life" input data sets. Simply reducing the input size to manageable levels without changing the
cache size could produce unrealistic results however. Therefore the input data sizes used for our
applications were chosen in tandem with our choice of cache size. We first determined input sizes
that could be simulated in a reasonable amount of time, and then experimented with various cache
sizes for those data sets. The cache size we ultimately selected, 128 KB, was chosen so as to avoid
too heavy an emphasis on replacement misses; this cache size is the smallest that holds the working
set of processors for our applications.

4 Performance Evaluation of Prefetching Strategies

In this section, we evaluate the performance of three cache-miss-initiated prefetching strategies.
We firs+ explore the effect of large cache blocks on the read miss rate and the memory access stall
time (MAST) of our application suite. We then investigate the effect of sequential prefetching and
hybrid prefetching on the miss rate and MAST as we vary the number of blocks prefetched on a
read miss. Finally, we examine the overall effect on running time of each of the cache-miss-initiated
prefetching techniques, and compare them to software prefetching, which does not require misses
to initiate prefetching.

4.1 Large Cache Blocks

Assuming that write buffers and release consistency can hide the cost of writes, then the block
size that results in the minimum read miss rate represents an upper bound on the effective size
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of cache blocks. Larger blocks simply increase the MAST (and consequently the running time) of
the application, regardless of the available bandwidth or the remote access latency. Given infinite
bandwidth, the block size that minimizes the read miss rate is optimal in terms of the overall
remote access cost; smaller blocks incur larger penalties for transferring the same amount of data.

Our ability to hide the cost of writes depends on the block size however. Increasing the block
size may increase the cost of write operations (and synchronization latency) due to the resulting
higher degree of sharing. Thus, even under infinite bandwidth, the block size that minimizes the
read miss rate may not produce the minimum stall time.

Figures 1-8 present the read miss rates and MASTs for each of our applications as a function
of cache block size. In the miss rate figures, the percentage at the top of each column represents
the percent of all reads to shared data that result in a miss; within a column misses are classified
as either eviction, cold start, true sharing, or false sharing misses.
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Figure 1 shows the read miss behavior of Barnes-Hut. Even though the working set of a
processor fits in its cache, evictions are still a problem due to limited spatial locality and to the
mapping of addresses in direct-mapped caches. The minimum read miss rate occurs with 64-byte
blocks; larger blocks increase the number of eviction misses (due to cache pollution) and false
sharing misses. The other categories of misses decrease with an increase in block size.

Although increasing the block size up to 64 bytes decreases the read miss rate, figure 2 shows
that the MAST is minimized with 16-byte blocks for most practical levels of bandwidth. The
improvements in miss rate for larger blocks are not enough to justify the increased miss penalty.
However, under infinite bandwidth 32, 64, and 128-byte blocks perform best; these block sizes offer
the lowest read miss rate (around 2.1%) and comparable read miss penalties (around 105 cycles).

Figure 3 shows the miss behavior of Gauss. As with Barnes-Hut, the miss rate of Gauss is
dominated by cache evictions. Evictions in Gauss are caused by poor temporal locality among
accesses to the main matrix; each processor repeatedly references a large portion of the matrix for
each row it is updating. Repeatedly doubling the block size (up through 128 bytes) continually cuts
the miss rate roughly in half. These improvements in the read miss rate are due to the excellent
spatial and processor locality of the program. Beyond 128-byte blocks, the read miss rate improves
much more slowly, with the minimum miss rate occurring when the block size is 512 bytes. Evictions
and false sharing increase the read miss rate when increasing the block size beyond 512 bytes.

Figure 4 demonstrates that increasing the block size to 128 bytes significantly reduces the
MAST for Gauss, regardless of the available bandwidth. However, for the finite levels of bandwidth,
increases in the block size beyond 128 bytes do not reduce the MAST, even though the read miss
rate is minimized at 512-byte blocks. The read miss penalty for 512-byte blocks is simply too
high: 1900, 980, and 320 processor cycles for low, medium, and high bandwidth levels, respectively.
512-byte blocks do perform best with infinite bandwidth, where a small reduction in miss rate is
enough to offset a minor increase in miss penalty (to 120 cycles).

As seen in figure 5, increasing the block size up to 128 bytes results in a decrease in the read
miss rate of IMlp3d. Although this trend in the miss rate is similar to the trends for Barnes-Hut
and Gauss, the composition of the miss rate for MMp3d is markedly different. For KHp3d, the read
miss rate is dominated by sharing-related misses instead of evictions. False sharing is the limiting
factor that precludes the use of 256-bytc blocks.

Figure 6 presents the MAST of MMp3d. For the low and medium levels of bandwidth, perfor-
mance suffers when using 128-byte blocks, even though this block size produces the minimum read
miss rate. The improvement in read miss rate offered by 128-byte blocks over 64-byte blocks does
not offset the increase in the read miss penalty, particularly at lower levels of bandwidth, where
miss penalties increase from 245 to 390 cycles under medium bandwidth and from 380 to 690 cycles
under low bandwidth. Even with high bandwidth, a fairly small block size (32 bytes) performs as
well as, or better than, larger block sizes.

In this case, the excessive memory access stall time produced by large blocks is due primarily
to the failure of the write buffer to hide write costs. Large blocks result in more apparent sharing
behavior, and hence a greater chance that a write operation will stall the processor. Thus, although
writes account for only 10% of the stall time with 128-byte blocks and medium bandwidth, they
account for 25% of the stall time with 512-byte blocks and medium bandwidth.

Figure 7 presents the miss rate behavior of Blocked LU. As with Mmp3d, sharing-related misses
dominate the read miss rate when the block size is larger than 16 bytes. For the first time, we see
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significant amounts of false sharing introduced with relatively small cache blocks. Despite the false
sharing, the minimum miss rate is achieved with large cache blocks (256 bytes).

As seen in figure 8, Blocked LU and MMp3d have similar MAST behavior. That is, the block
size that minimizes the read miss rate (256 bytes) performs much worse than smaller block sizes
at the lower levels of bandwidth. Even under infinite bandwidth, most of the performance gains
achievable by increasing the block size are captured by a fairly small cache block size (32 bytes).

To see whether more carefully tuned application programs can exploit larger cache blocks, we
modified Gauss to improve its temporal locality, and thereby reduce the number of eviction misses.
We modified the program so that each processor reads a pivot row once, updates all of its local
rows based on that pivot row, and then reads the next pivot row. The resulting program is called
TGauss.

By comparing the miss rates of Gauss (figure 3) and TGauss (figure 9) we can see that this
modification is very successful at reducing the number of replacement misses. The overall read
miss rate of TGauss is nearly a factor of 6 smaller than the read miss rate of Gauss for most block
sizes. It is therefore surprising to see that the minimum read miss rate for TGauss occurs with 128
and 256-byte blocks, whereas the minimum read miss rate for Gauss occurs with 512-byte blocks.
The composition of misses is different for the two programs, although evictions are the main driving
force in the overall read miss rate in both cases.

Although the upper limit on effective block size for TGauss is smaller than the upper limit for
Gauss (128 vs. 512 bytes), both programs achieve their lowest MAST with 128-byte cache blocks
in most cases. Thus, in this case, a program modification that significantly improves locality does
not increase the size of cache blocks that can be utilized effectively.

From these examples it is clear that several factors contribute to the read miss rate of applica-
tions, any one of which can limit effective increases in the block size. Bandwidth limitations further
constrain the effective size of cache blocks. For our applications, block sizes between 16 and 128
bytes provide the best MAST under medium and low bandwidth, while block sizes between 32 and
256 bytes perform best with high bandwidth. Fairly small cache blocks (32 or 64 bytes) can achieve
most of the performance benefits of larger blocks, even under infinite bandwidth, because larger
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Figure 11: Read miss rate of TGauss under Figure 12: MAST of TGauss under sequential
sequential prefetching. prefetching.

blocks reduce the miss rate by only a marginal amount. Furthermore, improvements in locality of
reference may not translate to effective increases in the block size.

See [Bianchini and LeBlanc, 1994] for a complete and detailed analysis of the effect of block
size on the miss rate and application performance.

4.2 Sequential Prefetching

In the previous section we saw that increasing the block size can drive up the miss rate or dra-
matically increase the miss penalty, which precludes the use of large cache blocks as an effective
prefetching technique. In this section, we investigate whether sequential prefetching can do bet-
ter, by alleviating the false sharing and high miss penalties associated with large blocks. Our
investigation of sequential prefetching is based on three programs: TGauss, MMp3d, and Blocked
LU.

Figures 11-16 present the read miss rate (under infinite bandwidth) and the MAST of our three
applications as a function of the load size (that is, the total number of bytes fetched and prefetched
on a read miss) under sequential prefetching. We use 32-byte cache blocks, and vary the number
of blocks prefetched on a miss.

Figure 11 shows that sequential prefetching produces lower miss rates than large cache blocks
for comparable load sizes. Under sequential prefetching the minimum read miss rate is only 0.10%
(with a load size of 512 bytes), which is a factor of 3 smaller than the minimum read miss rate
without sequential prefetching. Sequential prefetching performs better with the larger load sizes
because it eliminates false sharing misses and reduces the eviction miss rate substantially.

As seen in figure 12, sequential prefetching also produces lower stall times than large cache
blocks, primarily due to a decrease in the read miss penalty. For example, under sequential prefetch-
ing, the read miss penalties for a load of size 128 bytes are 220, 170, and 125 cycles for low, medium,
and high bandwidth, respectively. The miss penalties for 128-byte cache blocks are 530, 310, and
160 cycles respectively.
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Figure 12 also shows that an increase in bandwidth allows more aggressive prefetching. For
example, under low bandwidth, 256 bytes is the largest load size that reduces the MAST, but 384
bytes can be effectively utilized given medium or high bandwidth.

As seen in figure 13, the read miss rate of HMp3d is also reduced by sequential prefetching. The
minimum read miss rate is reduced from 2.6% to 2.0%. This improvement in the miss rate is due
almost entirely to fewer false sharing misses.

Although larger load sizes reduce the read miss rate under sequential prefetching, figure 14 shows
that these improvements in the miss rate may not translate to reductions in the stall time. At the
lowest level of bandwidth, a load size of 32 bytes produces the lowest M Higher bandwidth
allows more aggressive prefetching (up to 96 bytes), but even infinite banc cannot justify the
use of 512-byte loads, even though this load size produces the lowest read ... rate. The problem
with large load sizes for Mlp3d is that the cost of writes begins to dominate performance; writer
account for as much as 45% of the MAST with a 512-byte load size.

Blocked LU exhibits the smallest improvement in read miss rates from sequential prefetching.
The minimum miss rate produced by sequential prefetching is only 13% lower than the minimum
miss rate achieved without sequential prefetching. Most of the improvement comes fr rn a reduction
in false sharing misses.

Figure 16 shows that the MAST of Blocked LU is minimized with a load size of 64 bytes at all
levels of bandwidth. Once again, writes account for a large portion of the MAST, especially at the
larger load sizes. For example, with a 512-byte load size and low bandwidth, writes account for
30% of the stall time.

In summary, while aggressive sequential prefetching often improves the read miss rate of ap-
plications, it may not significantly reduce the stall time. In the particular case of programs with
fine-grain sharing and lots of write operations (e.g., N@p3d), the minor improvements in the read
miss penalty offered by aggressive prefetching may not compensate for a corresponding increase in
the cost of writes.

4.3 Hybrid Prefetching

In this section, we investigate whether hybrid prefetching can improve on the performance of
sequential prefetching. Hybrid prefetching has the potential to perform better, since it can prefetch
with any fixed stride between blocks, while being selective about how aggressively to prefetch. In
particular, the compiler may select aggressive prefetching for instructions dominated by cold misses,
while using more conservative prefetching strategies for instructions that reference data that exhibit
fine-grained sharing.

Our implementation of hybrid prefetching does not involve modifications to a real compiler.
Instead, we collect the required stride information by profiling our programs during a simulation
run. That is, we record a trace of the instructions with the highest miss rates and the addresses
referenced by those instructions. For each instruction that generates a substantial number of misses,
we process the trace to obtain the stride of access between every two consecutive references. We
select the stride that occurs most frequently (and represents at least 25% of all references generated
by the instruction) as the prefetching stride. Using this information, we manually instrument our
programs with directives for modifying the instruction/stride table at run time. The number of
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blocks to prefetch is constant for all instructions (except in a few cases, where we limit prefetching
to a single block due to fine-grain sharing), and we vary this number as one of the parameters for
our study.

The performance of hybrid prefetching is dictated in large part by the access stride (in terms of
cache blocks) and sharing patterns of applications. Both Gauss and TGauss exhibit unit stride, since
most of the references in their inner loops are to consecutive cache blocks. Thus, both sequential
and hybrid prefetching can be effective for Gauss and TGauss. In NMp3d, accesses to consecutive
particles and adjacent (along the x axis) space cells result in references to alternating cache blocks,
since these data structures are padded to fill two cache blocks. For Blocked LU the most common
stride of access is 48 blocks, which is caused by accesses to columns in a matrix stored in row-major
order. We would expect both lKl1p3d and Blocked LU to benefit from hybrid prefetching, since
both of these programs have a significant fraction of references with a fixed, non-unit stride. 4 For
Barnes-Hut, the vast majority of accesses in the program have no regular stride, so this program is
likely to pose serious problems for any prefetching strategy that depends on regular access patterns.

The sharing behavior of NNp3d and Blocked LU is similar in that both programs exhibit fine-
grain sharing; the miss rate of both applications is dominated by true and false sharing misses. In
the case of M4p3d, most of the misses (40%) are the result of true sharing of the data structure
representing the wind tunnel space (the cell array). For Blocked LU, most of the misses are caused
by false sharing of data in the main matrix. As a result, our implementation of hybrid prefetching
only prefetches one additional block when satisfying a read miss to either of these data structures.

Figures 17-22 show the read miss rate and MAST of TGauss, MlNp3d, and Blocked LU under
hybrid prefetching. As expected, hybrid prefetching and sequential prefetching perform exactly the
same for TGauss. For M1p3d hybrid prefetching produces slightly lower miss rates than sequential

'As seen in the previous section, sequential prefetching with a load size of 64 bytes is not particularly effective
for NMp3d, but prefetching with a load size of 96 bytes is effective. The explanation for this behavior is the dominant
number of references to alternating cache blocks in MNp3d. In this case, prefetching one block (a load size of 64 bytes)
does not help, but prefetching two blocks does help.
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prefetching, and a much lower MAST with large load sizes. Hybrid prefetching offers the most im-
provement for Blocked LU, cutting the minimum read miss rate from 2.8% to 1%, and substantially
reducing the minimum MAST achievable.

By comparing figures 14 and 20 we observe that the MAST incurred by hybrid prefetching is
relatively insensitive to load size, while the stall time incurred by sequential prefetching increases
dramatically with load size. Unlike hybrid prefetching, the stall time produced by aggressive
sequential prefetching is heavily influenced by write buffer stalls. The main reason write stalls are
kept under control in hybrid prefetching is that we use a conservative prefetching strategy on the
cell array in JOlp3d, while simultaneously using an aggressive strategy on other data structures.
Although our conservative strategy results in a slightly higher miss rate than would otherwise be
possible with hybrid prefetching, it avoids the excessive stall time due to writes encountered under
sequential prefetching.

By comparing figures 16 and 22 we can see that hybrid prefetching not only avoids excessive stall
time due to writes, it also reduces the minimum MAST for each level of bandwidth. For Blocked
LU, the minimum MAST produced by sequential prefetching under low bandwidth is 13.5M cycles,
while the minimum MAST under hybrid prefetching is 10.9M cycles. Hybrid prefetching is even
better under high bandwidth, decreasing the minimum MAST from 6.1M cycles to 3.2M cycles. In
this case, the performance gap between hybrid and sequential prefetching increases with bandwidth,
because higher bandwidth allows for more aggressive prefetching, which is beneficial (i.e., lowers
the miss rate) in the case of hybrid prefetching, but not in the case of sequential prefetching (which
can only benefit unit-stride accesses). Note that these improvements depend on a conservative
implementation of hybrid prefetching for a select group of instructions; we only prefetch a single
block on each read miss caused by any of five instructions, which together are responsible for 33%
of the read misses in the program.

Blocked LU is an example of a program that exploits both of the properties that distinguish
hybrid prefetching from sequential prefetching: a non-unit stride of access and a mixture of aggres-
sive and conservative prefetching. The benefits of hybrid prefetching are limited however, because
we avoid aggressive prefetching on five instructions that account for one third of the read misses.
Perhaps by restructuring the program to reduce sharing, we could use aggressive prefetching on all
the instructions, and reduce stall time even more.

To test this hypothesis, we modified Blocked LU to produce a new program called static blocked
LU (SBlocked LU). In the modified program, each process works on a single set of data elements
throughout its lifetime, rather than migrating among data elements in the interests of load balanc-
ing. Although SBlocked LU exhibits less sharing than Blocked LU, it does not keep all processors
busy throughout the execution; on average, a processor drops out of the computation every three
phases of the program.

Figure 23 shows the read miss rates of SBlocked LU. The minimum read miss rate produced by
hybrid prefetching is 0.39%, which is a factor of 7 improvement over 32-byte blocks, and a factor
of 5 improvement over the minimum read miss rate produced by sequential prefetching. Most of
the improvements in the miss rate come from reductions in true and false sharing. As expected,
SBlockod LU has lower miss rates than Blocked LU; the lowest miss rate of SBlockod LU is a factor
of 2.7 smaller than the lowest miss rate of Blocked LU. More importantly, the improvement in the
miss rate offered by prefetching is dramatically higher for SBlocked LU, a factor of 7 vs. a factor
of 3.4 for Blocked LU.
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Figure 24 shows the MAST of SBlocked LU as a function of the load size and available band-
width. As seen in the figure, there is a significant drop in the cost of memory accesses as we increase
the load size up to 96 bytes, beyond which the MAST performance improves very slowly. Nonethe-
less, hybrid prefetching performs much better than sequential prefetching, lowering the minimum
MAST of sequential prefetching by 41% under low bandwidth, and 53% under high bandwidth. In
contrast, hybrid prefetching lowered the minimum MAST of sequential prefetching for Blocked LU
with low bandwidth by only 19%, and by 48% with high bandwidth. This example illustrates the
enormous benefits of aggressive prefetching in the absence of fine-grain sharing.

In summary, hybrid prefetching is comparable to sequential prefetching for programs with unit-
stride access (such as TGauss), but offers additional opportunities for prefetching for programs
with large, regular stride accesses (such as SBlocked LU). By using a mixture of aggressive and
conservative prefetching within a program, hybrid prefetching can offer the benefits of prefetching
for instructions with a regular access pattern, while avoiding prefetching on instructions that result
in excessive sharing (as in NMp3d and Blocked LU). Since hybrid prefetching need not use the same
load size on every instruction, it is better able to translate an increase in bandwidth to an increase
in load size. As a result, the benefits of hybrid prefetching relative to sequential prefetching tend
to increase with bandwidth.

4.4 Comparison of Prefetching Techniques

In this section we evaluate the success of cache-miss-initiated prefetching by examining the overall
effect on running time of eacl: technique. We also compare cache-miss-initiated prefetching with
software prefetching [Callahan et al., 1991; Mowry et al., 19921, which does not require misses to
initiate prefetching.

As with hybrid prefetching, we implemented software prefetching by hand. We use the miss
rate information gathered for hybrid prefetching to determine the instructions that can benefit from
prefetching. After identifying the most important instructions, we manually inserted prefetches so
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that data blocks are received just before they are required. In order to hide the latency of prefetch-
ing without generating substantial instruction execution overhead, we perform loop unrolling and
splitting wherever necessary. Each prefetch instruction prefetches a single cache block in read mode:
that is, we do not implement block and exclusive prefetches.

Figures 25-32 present a comparison of the running time produced by each of the techniques
under low and high bandwidth assumptions for each of our applications. In these figures each
column represents a different prefetching technique: 32-byte blocks with no prefetching (32B), the
best block size for a given program (i.e., the block size that produces the smallest running time)
with no prefetching (BBS), sequential prefetching with the load size that produces the smallest
running time (SP), hybrid prefetching with the load size that produces the smallest running time
(HP), and software prefetching (SWP). The number on the top of each column is the running time
of that technique as a percentage of the running time for the base case of 32-byte blocks with no
prefetching. Within a column running time is broken into busy time, read stall time, write stall
time, and synchronization overhead.
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Figure 25: Running time of TGauss with low Figure 26: Running time of TGauss with high
bandwidth. bandwidth.

Figure 25 shows the running time of TGauss with low bandwidth. As seen in the figure, se-
quential, hybrid, and software prefetching perform roughly the same for this program, improving
its running time by about 20%. Using the best block size for this program (64 bytes) and no
prefetching improves performance by only 8%.

It is interesting to note that software prefetching has a slightly lower busy time than the other
techniques, despite the need for prefetching instructions. The reason for this counter-intuitive
behavior is that in our implementation of software prefetching we unrolled the main computational
loop in TGauss several iterations more than a standard compiler would have done. Without this
aggressive unrolling, software prefetching introduces high instruction overhead.

In terms of the read stall overhead, software prefetching performed slightly worse than sequential
and hybrid prefetching since, at this level of bandwidth, more than 30% of the prefetches issued
under software prefetching are completed too late to avoid a miss.
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Figure 26 shows running times for TGauss under high bandwidth. At this level of bandwidth, the
best block size (128 bytes) performed almost as well as the other techniques. Software prefetching
performs better in terms of read stall time under high bandwidth, where only 9% of the prefetches
are received late.

Figures 27 and 28 present running times for MHp3d under low and high bandwidth, respectively.
In both figures we see that the cache-miss-initiated prefetching techniques are not successful at
reducing the execution time significantly in comparison to the base architecture. Software prefetch-
ing, on the other hand, substantially improves running time (especially under low bandwidth), even
though it increases the busy time.

As seen in figures 29 and 30, both hybrid prefetching and software prefetching are able to im-
prove the running time of Blocked LU in comparison to the other techniques. Software prefetching
performs better regardless of bandwidth because our implementation of hybrid prefetching is con-
servative on certain instructions. This conservative approach produces a higher read miss rate for
hybrid prefetching (2.1% vs 1.6% at low bandwidth, and 1.5% vs 0.7% at high bandwidth).

Finally, figures 31 and 32 show the running time of SBlocked LU for each of the techniques.
As with Blocked LU, both hybrid and software prefetching perform much better than the other
techniques. Since SMlocked LU admits more aggressive cache-miss-initiated prefetching, hybrid and
software prefetching offer comparable performance. Large block sizes and sequential prefetching
produce very limited performance improvements, whereas hybrid and software prefetching improve
the execution time by 20% to 24%, depending on bandwidth.

These results illustrate the circumstances under which cache-miss-initiated prefetching is most
effective. If programs exhibit a regular access pattern, then each miss can prefetch a lot of data, and
avoid future misses. Among the cache-miss-initiated techniques, only hybrid prefetching can adapt
to large stride access patterns, and can tailor the amount of data prefetched on a miss according
to the sharing behavior of each instruction. In the best case, hybrid prefetching offers performance
comparable to software prefetching, which need not wait for a miss before issuing prefetches.
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5 Conclusions

In this paper, we used execution-driven simulation of parallel programs on a scalable cache-coherent
machine to study the performance of three cache-miss-initiated prefetching techniques: large cache
blocks, sequential prefetching, and hybrid prefetching. Large cache blocks and sequential prefetch-
ing are well-known prefetching strategies. Hybrid prefetching is a novel technique combining hard-
ware and software support for stride-directed prefetching.

Our simulation results showed that large cache blocks rarely provide significant performance
improvements; the incremental improvement in the miss rate gained by using larger blocks is
simply too small to offset a corresponding increase in the miss penalty. Our results also showed that
sequential prefetching improves on the performance of large cache blocks by alleviating false sharing
and high miss penalties. A comparison of sequential and hybrid prefetching shows that the latter
technique performs at least as well as the former, as it can prefetch with large strides between blocks,
while being selective about how aggressively to do so. In fact, given sufficiently high bandwidth
and regular memory addressing, hybrid prefetching can perform as well as software prefetching. We
conclude that among the cache-miss-initiated prefetching techniques we consider, hybrid prefetching
is the only technique that offers significant performance improvements for scalable multiprocessors.
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